Cuadernillo de examen

ASIGNATURA: Fundamentos de Programación I CÓDIGO: 106
CONVOCATORIA: Febrero 2006 PLAN DE ESTUDIOS: 2000/2002

CURSO: 1º CURSO ACADÉMICO: 2005/2006

TURNO: Mañana PROGRAMA: Ingeniería Informática

Ingeniería Técnica en Informática

CARÁCTER: Cuatrimestral (Primer cuatrimestre) ESPECIALIDAD: Común

DURACIÓN APROXIMADA: 2 horas y media

Solución propuesta

Preguntas teórico-prácticas

1. Programación modular. Criterios para la descomposición de un programa en módulos. Mecanismos de intercambio de información entre el programa principal y los módulos: ámbito de variables y paso de parámetros.

Apuntes de clase y apartados 6.4 y 6.5 del libro de texto

Aplicación

Se desea realizar un módulo que devuelva la división entera de dos números enteros que se pasarán como argumentos y **sin utilizar el operador de división entera**. Codifique dos versiones del módulo, una utilizando un procedimiento y otra utilizando una función.

```
procedimiento DivisiónEntera(valor entero : a,b ; ref entero : cociente)
inicio
   cociente \leftarrow 0
   mientras a >= b hacer
      cociente ← cociente + 1
      a ← a −b
   fin mientras
fin procedimiento
entero función DivisiónEntera(valor entero : a,b)
   entero : cociente
inicio
   cociente ← 0
   mientras a >= b hacer
      cociente ← cociente + 1
      a ← a -b
   fin mientras
   devolver (cociente)
fin función
```

Puntuación: 1,5 punto

2. Enumere y describa el funcionamiento de los métodos de ordenación que conozca.

Apartado 10.2 del libro de texto

Aplicación

En un array desordenado de registros se almacenan los resultados de una prueba ciclista. Cada registro contiene información con el dorsal, el nombre del corredor y el tiempo en segundos obtenido en la prueba. Utilizando el **método de ordenación de Shell** obtenga la clasificación de la prueba (los datos ordenados de menor a mayor por el campo tiempo). Declare además las estructuras de datos utilizadas.

```
const
   MaxEl = ...
tipos
   registro = corredor
   entero : dorsal
```

```
cadena : nombre
      real : tiempo
    fin registro
    array[1..MaxEl] de corredor = corredores
procedimiento OrdenaciónShell(ref corredores:v; valor entero : n)
var
   entero : i,j,incr
inicio
   incr \leftarrow n div 2
   mientras incr > 0 hacer
      desde i 
incr + 1 hasta n hacer
         j ← i - incr
         mientras j > 0 hacer
            si v[j].tiempo > v[j + incr].tiempo hacer
                intercambiar(v[j], v[j + incr])
                j \leftarrow j - incr
            si no
                j ← 0
             fin si
               fin mientras
            fin desde
            incr \leftarrow incr div 2
   fin mientras
fin procedimiento
```

Puntuación: 1,5 puntos

- **3.** Archivos. Explique:
 - La estructura lógica y la estructura física de un archivo.
 - Tipos de organización de archivos.

Apartados 9.1, 9.2 y 9.4 del libro de texto

Aplicación

Se tienen los datos de la prueba ciclista de la aplicación del ejercicio anterior en un archivo secuencial. Codifique:

- Un procedimiento que cargue la información (dorsal, nombre y tiempo) en el array de registros.
- Un procedimiento que almacene el array ordenado del apartado anterior en un nuevo archivo secuencial.

```
procedimiento CargarCorredores(ref corredores: c; ref entero: n)
//La variable N se cargará con el número total de registros leídos
var
   archivo s de corredor : A
   corredor : R //El registro que se leerá del archivo
inicio
   abrir(A, lectura, 'CARRERA.DAT')
   leer(A,R)
   n ← 0
   mientras no fda(A) hacer
      n \leftarrow n + 1
      c[n] \leftarrow R
      leer(A,R)
   fin_mientras
   cerrar(A)
fin procedimiento
procedimiento GrabarCorredores(valor corredores : c; valor entero : n)
   archivo s de producto : A
   entero : i
```

```
inicio
  abrir(A, escritura, 'CARRERA.DAT')
  desde i ← 1 hasta n hacer
      escribir(A, c[i])
  fin_desde
  cerrar(A)
fin_procedimiento
```

Puntuación: 1,5 puntos

Pregunta práctica

Una librería almacena en un array la información de los N libros que ha vendido en el mes de enero. Por cada libro almacena:

- ISBN (una cadena).
- Título (una cadena).
- Precio de cada ejemplar (un dato real).
- El número de ejemplares vendidos en cada uno de los días del mes (31 datos enteros).

Se pide:

a) Declarar las estructuras de datos necesarias para realizar cada uno de los siguientes apartados

```
const
   NumLibros = ...
tipos
   registro = libro
      cadena : ISBN, título
      real : precio
      array[1..31] de entero : ventas
   fin_registro

array[0..NumLibros] de libro = libros

//Para meter el número de ejemplares vendidos (apartado b) y
//utilizarlo para sacar el "Top 10"
   array[1..NumLibros] de entero : vector
```

Puntuación: 0,5 puntos

b) Realizar un módulo que calcule el número de ejemplares vendidos de cada título a lo largo del mes.

Puntuación: 1 punto.

c) Realizar un módulo que calcule la facturación de cada libro en cada uno de los días del mes.

```
procedimiento FacturaciónPorDía(valor libros : l; valor entero : n)
var
    entero : i,j
```

```
real : facturaciónDía
     inicio
        desde i ← 1 hasta 31 hacer
           facturaciónDía ← 0
           desde j ← 1 hasta n hacer
               facturaciónDía ← facturaciónDía + l[j].precio * l[i].ventas[j]
           escribir (facturaciónDía)
        fin desde
     fin_procedimiento
     Puntuación: 1 punto.
d)
     Realizar un módulo que devuelva qué libro ha realizado una facturación más alta y en que día se realizó.
     procedimiento VentasMáximas(valor libros : 1; valor entero : n;
                                     ref entero : TitMax, DiaMax)
     var
        entero : i,j
     inicio
        TitMax ← 1
        DiaMax ← 1
        desde i ← 1 hasta n hacer
           desde j ← 1 hasta 31 hacer
               si l[i].precio * l[i].ventas[j] >
                      1[TitMax] * 1[TitMax].ventas[DiaMax] entonces
                  TitMax ← i
                  DiaMax ← j
               fin si
           fin desde
        fin desde
     fin procedimiento
     Puntuación: 1,5 puntos.
     Realizar un módulo que genere la lista de los "Top 10" (10 libros más vendidos del mes).
e)
     procedimiento TopTen(valor libros:1; valor vector : v; valor entero : n)
     //Vector es el array con las ventas mensuales de cada libro
     var
        entero : i,j,min
        libro : auxL //Para intercambiar los libros
        entero : auxV //Para intercambiar las ventas
     inicio
        desde i \leftarrow 1 hasta n-1 hacer
           min ← i
           desde j ← i hasta n hacer
               si v[j] < v[min] entonces</pre>
                min ← j
               fin si
           fin desde
           //Se intercambian los elementos del array de ventas
           auxV \leftarrow v[i]
           v[i] \leftarrow v[min]
           v[min] ← auxV
           //También es necesario intercambiar el array de libros
           //para considerar dos arrays paralelos
           auxL \leftarrow l[i]
           l[i] ← l[min]
           fin desde
        //Los diez primeros elementos de la lista serán los libros más vendidos
```

desde i ← 1 hasta 10 hacer
 escribir(l[i].título
 fin_desde
fin_procedimiento